

AAH-003-001617 **Seat No. _____**

B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2016

BSMT-602(A) - Mathematics

(Mathematical Analysis-II & Group Theory-II)

Faculty Code : 003

Subject Code : 001617

Time : $2\frac{1}{2}$ Hours]

[Total Marks : 70]

Instructions :

- (1) All questions are compulsory
- (2) All question of section – A carry equal marks and each question of section – B carry 25 marks.
- (3) Write answer of each section in your main answer sheet.

SECTION – A

1 Write the correct answer of following MCQ's in your **20** answer book :

- (1) The set $E = (1,3)$ of metric space R is
 - (A) open
 - (B) connected
 - (C) compact
 - (D) Both (A) and (B)
- (2) Which of the following is connected ?
 - (A) $R - \{3\}$
 - (B) $\{1, 2, 3, \dots, 10\}$
 - (C) $(1, 3) \cup (3, 5)$
 - (D) None of these
- (3) Two polynomial f and g in F are said to be associates if
 - (A) f and g are monic
 - (B) f and g are non-zero
 - (C) f/g and g/f
 - (D) None of these
- (4) The set $E = \{x \in R / -3 < x < 0\}$ of metric space R is
 - (A) open
 - (B) compact
 - (C) disconnected
 - (D) closed

(12) $L(\sin at) = \underline{\hspace{2cm}}$

(A) $\frac{a}{s^2 + a^2}$

(B) $\frac{s}{s^2 + a^2}$

(C) $\frac{s}{s^2 - a^2}$

(D) $\frac{a}{s^2 - a^2}$

(13) Laplace transform of t^n is, where $n = 0, 1, 2, 3, \dots$

(A) $\frac{\gamma(n+1)}{s^{n+1}}$

(B) $\frac{n!}{s^{n+1}}$

(C) $\frac{\gamma(n)}{s^n}$

(D) Both (A) and (B)

(14) $L^{-1}\left\{\frac{1}{s}\right\} = \underline{\hspace{2cm}}$

(A) t

(B) t^2

(C) 1

(D) 0

(15) Laplace inverse of $\frac{1}{4s+5}$ is

(A) $e^{\frac{t}{4}}$

(B) $e^{-\frac{5t}{4}}$

(C) $\frac{1}{4}e^{-\frac{t}{4}}$

(D) $\frac{1}{4}e^{-\frac{5t}{4}}$

(16) Which of the following is not a field?

(A) $(R, +, \cdot)$

(B) $(C, +, \cdot)$

(C) $(Z, +, \cdot)$

(D) None of these

(17) Which of the following is an integral domain but not a field?

(A) $(Z, +, \cdot)$

(B) $(R, +, \cdot)$

(C) $(Q, +, \cdot)$

(D) None of these

SECTION - B

2 (a) Attempt any **three** :

- (1) Define connected set and interval.
- (2) Check whether the subset $E = \{1, 2, 3, \dots, 11\}$ of R is compact or connected.
- (3) If A and B are compact subsets of metric space R then show that $A \cap B$ is also compact.
- (4) Find Laplace transform of $e^{-2t} \sin 5t$.
- (5) Prove that $L[e^{at} \cosh bt] = \frac{s-a}{(s-a)^2 - b^2}$
- (6) Prove that $L(\cos at) = \frac{s}{s^2 + a^2}$

(b) Attempt any **three** : 9

(1) Prove that every open interval of metric space R is an open set.

(2) Show that the finite subset of a metric space is compact.

(3) Show that set $R - \{3\}$ is not connected.

(4) If $L\{f(t)\} = F(s)$ then prove that

$$L\left\{e^{at}f(t)\right\} = F(s-a).$$

(5) Find Laplace transform of $\cosh^3 2t$.

(6) Find inverse Laplace transform of $\frac{s}{(s^2 - 1)^2}$.

(c) Attempt any **two** : 10

(1) If A and B are compact sets of metric space X then prove that $A \cup B$ and $A \cap B$ are also compact sets.

(2) State and prove theorem of nested intervals.

(3) Show that every compact subset of a metric space is closed set.

(4) If $L\{f(t)\} = \bar{f}(s)$ and $\frac{f(t)}{t}$ has Laplace transform

$$\text{then } L\left(\frac{f(t)}{t}\right) = \int_s^\infty \bar{f}(s) ds.$$

(5) Find inverse Laplace transform of $\frac{1}{s(s^2 + 4)}$.

3 (a) Attempt any **three** : 6

(1) Define : Ring, Principle ideal ring.

(2) $\emptyset: (G, *) \rightarrow (G', \Delta)$ is Homomorphism. Then prove

$$\text{that } \emptyset(a^{-1}) = [\emptyset(a)]^{-1}.$$

(3) Let I be an ideal of ring with unity R then prove that $I = R$ if $1 \in I$.

(4) Find the characteristics and zero divisor of ring z_6 .

(5) $f(x) = (2, 3, 4, 2, 0, 0 \dots)$ and $g(x) = (4, 2, 0, 0, 3, 0 \dots)$

$\in z_5[x]$ then find $f(x) + g(x)$.

(6) Define : Principle ideal, Kernel of a homomorphism.

(b) Attempt any **three** : 9

(1) Show that $R = \{a + b\sqrt{2} / a, b \in z\}$ is a ring with respect to the usual addition and multiplication.

(2) $\emptyset: (G, *) \rightarrow (G', \Delta)$ is Homomorphism with kernel K_\emptyset then prove that K_\emptyset is a normal subgroup of G .

(3) Show that there does not exist proper ideal in Field.

(4) If I_1 and I_2 are any ideals of a ring R then prove that $I_1 \cup I_2$ is also an ideal.

(5) Give the example which is right ideal but not left ideal.

(6) In $R(x)$, $f(x) = 3x^4 - 5x^3 + 11x^2 + x - 1$ is divided by

$g(x) = x^2 - 2x - 2$ then find quotient and remainder.

(c) Attempt any two :

10

(1) Prove that a homomorphism $\phi: (G, *) \rightarrow (G/\Delta)$ is one-one iff $K_\phi = \{e\}$.

(2) Prove that any integral domain is a field.

(3) State and prove Factor theorem and Remainder theorem.

(4) Prove that a commutative ring with unity is a field if it has no proper ideal.

(5) State and prove fundamental theorem of homomorphism.
